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while mechanization, land use, temperature, dam construction, and business farming are inversely related. Taken 
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1 INTRODUCTION

Climate change will increasingly affect arid and semi-arid terrestrial ecosystems throughout 

this century. Climate projections suggest that these regions will become even drier and more fre-

quently suffer from water stress (El-Beltagy; Madkour, 2012). Current and future scenarios reveal 

expressively challenges for the sustainable development of agriculture in semi-arid lands. In addi-

tion to being vulnerable to extreme events, such as droughts and floods, agriculture in these areas 

faces substantial constraints regarding the natural, financial, and technological resources needed 

to adapt to climate change and manage related risks (Singh; Chudasama, 2021).

The Northeast of Brazil is a semi-arid region often hit by extreme weather and increasingly ex-

posed to climate change. Its vulnerability comes from geographic conditions, reliance on rainfed 

agriculture, and a large population of 57.6 million—the most populous semi-arid region worldwi-

de. It produces 11% of Brazil’s agricultural output and houses about 47.8% of the country’s rural 

population involved in agriculture (Marengo et al., 2020)1.

Droughts worsened by climate change reduce agricultural productivity and influence how land 

is used. Past droughts can change how farmers plan future crops, especially under ongoing cli-

mate risks, pests, and losses (Khanal; Mishra, 2017). This is especially true as droughts become 

more frequent. Farmers who grow temporary crops rely heavily on irregular rainfall. In semi-arid 

regions, poor water infrastructure and low soil quality make farming difficult, even in normal con-

ditions (Zúñiga et al., 2021; Marengo et al., 2020). This has sparked debate over which farming 

systems best support sustainable agriculture in climate-vulnerable areas. Local farmers may adopt 

specialized, diversified, or hybrid systems2.

This paper analyzes the impact of drought and the factors driving diversification of temporary 

crops in Northeast Brazil3. Using longitudinal data from 2000 to 2019, it tests the hypothesis that 

crop diversification has declined mainly due to intense, recurring droughts over the past two de-

cades. It also examines whether climate variability prompts farmers to diversify more, indicating 

adaptation to worsening climate conditions4.

Using a quantile regression model with fixed effects and natural variation in climate as a natu-

ral experiment, we estimate the causal effects of drought on agricultural diversification. Our main 

findings are: first, we document that diversification in rainfed agriculture increases with climatic 

variability but decreases with droughts. However, the impacts of droughts are smaller in areas 

with greater agricultural diversification, which is consistent with a process of municipal agricul-

ture adaptation to adverse climatic conditions. Second, we identify that family labor, conservation 

1 The increasing frequency of droughts has been causing growing damage to the agricultural sector in the Northeast. The damage caused by 

droughts to regional agriculture are estimated at up to R$ 1.5 billion per year (Marengo; Besnasconi, 2015).

production (Sekyi et al., 2021). However, allocating agricultural land to some crops also brings disadvantages, such as the increased risk of 

crop losses and productivity and limitations in conventional sustainable management practices, such as crop rotation. This system is only viable 

in a stable market, requiring reliable commercial agencies and contracts. In regions where markets are still developing, the use of land for 

reduce agricultural losses associated with droughts and, at the same time, contribute to sustainable agricultural development. Under these 

fertility and food supply, leading to better nutrient absorption (Mulwa; Visser, 2020). In this context, farmers are increasingly trying to balance 

that out of the 1.64 million rural establishments that produce temporary crops, 81.2% are family farmers (Castro; Freitas, 2021). Previously, 

Seo (2010) found that South American farmers, including those in Brazil, prefer mixed cropping systems over specialized ones. This 

perspective provides additional context for our work.

Kuwayama et al. (2019), Birthal et al. (2019) and Deschênes and Greenstone (2007)); studies that explore the impacts of drought on 

agricultural land cover and use are still scarce (e.g., Rahman, 2016).
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of natural resources, non-agricultural income, the size of the local market, precipitation, access to 

rural credit, and subsistence farming is directly related to the diversification of temporary crops 

in northeastern municipalities, while mechanization, land use, temperature, dam construction, and 

business farming are inversely related. Taken together, these results support the implementation 

of agricultural diversification policies to promote economic resilience, agrarian sustainability, and 

the adaptation of local farmers to climate change5,6.

The remainder of the paper is organized as follows. In Section 2, we present the economic 

model that serves as a theoretical basis for analyzing the determinants and droughts in the diver-

sification of rainfed agriculture. Section 3 presents the data and the econometric strategy. The 

empirical results are discussed in Section 4, and the conclusions are presented in the final section.

2 THE ECONOMIC MODEL

We expanded an economic model to analyze farmer’s land use decisions for planting tem-

porary crops in the context of climate change. The model builds on the theoretical and empi-

rical frameworks of Smale et al. (2001), Benin et al. (2004), Isik (2004), and Rahman (2008, 

2016). Our analysis assumes an economic setting where production and consumption take pla-

ce simultaneously.

The farmer produces a vector  of agricultural products using a vector of inputs  acquired 

in the input market. Their production choices are conditioned by the technology available to trans-

form inputs into agricultural products that will be distributed in a consumer market, as well as the 

allocation of a fixed land area ( ). This land is used for planting, given the characteristics 

of the property ( ). The total production of each farmer  is given by a stochastic quasi-concave 

production function:

  (1)

where  is the stochastic variable that indicates a set of random factors that affect the level of 

agricultural production, including changes in weather conditions. The proportion of each planting 

area ( ) among  temporary crops add up to one: , given , with mapping 

in the production vector. The proportion of the area planted with temporary crops determines 

the level of agricultural production (Rahman, 2016). The profit of each farm  is given by the 

following equation:

  (2)

Previous studies conducted by Rahman (2016), Piedra-Bonilla et al. (2020a), Makate et al. (2022), Birthal and Hazrana (2019), Mulwa and 

studies used cross-sectional data, while others focused on vulnerable regions. For example, Rahman (2016) concluded that precipitation 

Previous studies conducted by Rahman (2016), Piedra-Bonilla et al. (2020a), Makate et al. (2022), Birthal and Hazrana (2019), Mulwa and 

studies used cross-sectional data, while others focused on vulnerable regions. For example, Rahman (2016) concluded that precipitation 



146

Álvaro Robério de Souza Sá e Luziane da Silva Gomes

Rev. Econ. NE, Fortaleza, v. 56, n. 3, p. 143-163, jul./set., 2025

where  is the vector of agricultural product prices and  is the vector of input prices.

It is assumed that the producer has a von Neumann-Morgenstern utility function, with  

defining wealth. As the function is convex, then  and . Accumulated wealth is 

given by the initial wealth ( ) plus the profit ( ) provided by agricultural production. Accor-

ding to Isik (2004) and Rahman (2016), the producer's objective is to maximize their expected 

utility function.

    (3)

Where  is the expectation operator defined over . The choice variables in Eq. (3) are the 

levels of inputs employed on the farm ( ), characterized by the first-order conditions.

    (4)

The second-order conditions are satisfied under risk aversion and an quasi-concave production 

function (Isik, 2004). We can rewrite Eq. (4) as follows:

    (5)

where the covariance term is the marginal risk premium. A risk-averse farmer uses more (less) of 

an input with a negative (positive) marginal risk premium, given that the function is convex. The 

optimal levels of input and output are:

         (6)

         (7)

2.1 Determinants of diversification in rainfed agriculture

To identify the factors that influence farmers' choices regarding the planting of temporary 

crops, we derive the expected utility function, denoted by Eq. (3), following the approach of Benin 

et al. (2004) and Rahman (2008; 2016):

    (8)

The equivalent income in a single decision-making period involves profits ( ) from agricultu-

ral production and initial wealth orthogonal to agricultural crop choices ( ), such as agricultural 

capital assets and other resources transferred from previous periods.

When markets function perfectly, households make agricultural production and consumption 

decisions separately. In this context, the household seeks to maximize farm profits, subject to 

technological and budget constraints. This decision-making process – such as crop selection – 
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can be expressed in a simplified form based on input and output prices, farm characteristics, 

land size, initial wealth, and the family's socioeconomic profile (Smale et al., 2001; Benin et al., 

2004; Rahman, 2016).

    (9)

Following Benin et al. (2004) and Rahman (2016), we use Equation (9) as the theoretical 

foundation for our empirical model. This equation is based on a constrained optimization problem 

and captures the main factors influencing land use decisions for planting. Given the local focus 

of this study, we extend the equation by introducing the term  to explicitly include additio-

nal variables such as market access, infrastructure, rural credit, natural resources, and municipal 

characteristics. The error term  accounts for random influences like temperature and rainfall 

variability. In the Northeast region, producers and rural households’ factor in the risk of drought 

when making production and consumption decisions. We treat droughts as random climate-related 

events and evaluate their impact on dryland agricultural diversification (El-Beltagy; Madkour, 

2012). Our main assumption is that farmers’ combined decisions – shaped by various influencing 

factors – reflect the local allocation of land for temporary crops in each period, as represented by 

the following equation:

   (10)

where  represents the diversification index defined by the plot of land allocated for planting 

temporary crops ( ) for  municipalities and  years. Moreover, this is also 

a measure of productivity, as farmers can increase output through agricultural specialization and 

diversification (Rahman, 2016).

3 DATA AND ECONOMETRIC STRATEGY

3.1 Data

Our empirical analysis is based on balanced panel data from 1,794 municipalities in Northeast 

Brazil, spanning 2000 to 2019. The dataset includes information on agricultural production, wea-

ther, natural resources, rural credit, water infrastructure, and sociodemographic conditions.

To evaluate the impact of drought on agricultural diversification, we used data from the Pro-

dução Agrícola Municipal (PAM) survey, which reports municipal-level information on the plan-

ted area of 33 temporary crops. From this, we calculated indicators of diversification in rainfed 

agriculture and created a variable to classify whether each municipality primarily grows business 

crops (corn) or subsistence crops (beans). Since soy was cultivated in only 2.2% of municipalities 

in the early 2000s, it was excluded from the business agriculture analysis. However, it's important 

to note the growing adoption of soy-corn double cropping systems in Brazil (Abrahão; Costa, 

2018). These classification variables also reflect the influence of market demand on crop choices 

(Piedra-Bonilla et al., 2020).

We use weather data from the ERA5-Land database (ECMWF), which provides monthly tem-

perature and precipitation records at a 9 km resolution from 1980 to 2019. These variables are 

used to calculate a drought index and measures of climate variability. Climate variability is me-
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asured by deviations in precipitation and temperature from long-term averages, capturing both 

drought and humidity conditions. The drought index calculation is detailed later.

Data on agricultural production factors were obtained from the 2006 and 2017 Agricultural 

Censuses. These include the number of tractors, family and non-family farmers, and the area of ir-

rigated land. To account for changes over time, we weighted these factors by the area planted with 

temporary crops in each municipality. Irrigated land was weighted by the municipality's total area. 

We sourced data on gross income, population, regional location, and land area from the Insti-

tuto Brasileiro de Geografia e Estatística (IBGE). From these, we calculated nonagricultural ave-

rage income, population density, and agricultural land use. Data on rural credit stock came from 

the Banco Central do Brasil (BCB), which we used to create a variable for access to rural credit 

(Parré; Chagas, 2022). The Secretaria do Tesouro Nacional (STN) provided data on municipal 

agricultural spending, used to build a rural investment variable. Both rural credit and agricultural 

spending were weighted by the gross value of municipal production. All monetary values were 

adjusted to 2000 using the IGP-DI index.

We also included variables on natural resources and water infrastructure. Data from Mapbio-

mas Brasil were used to calculate forest and surface water coverage rates for each municipality. 

Information on water infrastructure comes from the Portal da Transparência (CGU), which re-

ports municipalities with at least one completed contract for dam or weir construction, expansion, 

or implementation during the study period. This variable is binary, set to one if the municipality 

received such a project. Detailed variable descriptions and descriptive statistics are available in 

the Appendix (Tables A1–A3).

3.1.1 Agricultural diversification

To examine diversification in rainfed agriculture, we calculated the Simpson Diversity Index 

(S), which evaluates the contribution of each area planted with temporary crops to total cropland 

(Simpson, 1949). This index provides an indication of the spatial dispersion of temporary crop 

cultivation within a locality and can be derived as follows:

   (11)

where  is the Simpson Diversity Index (S) of rainfed agriculture for the municipalities ( ) and 

year ( ).  is the proportion of area planted with  temporary crops in the municipality ( ) 

and year ( ). A value of  represents perfect specialization, while a value of  denotes perfect 

diversification in municipal agriculture. Next, we calculated the untruncated version of the indica-

tor: . The modified index is the dependent variable in the empirical model.

As a measure of robustness, we also calculated the Shannon index ( ) and the Effective Num-

ber of temporary crops planted ( ) in each municipality. The indicators carry the structure of the 

Simpson index ( ), that is, the proportion of the area planted with temporary crops ( ). The 

Shannon index considers both the abundance and wealth, and uniformity of agricultural crops pre-

sent in each municipality. In general, the index ranges from 1.5 to 3.5 (Parré; Chagas, 2022). The 

Shannon index is calculated as follows:

   (12)
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The Effective Number ( ) is an agricultural diversification indicator derived from the Shan-

non index. The indicator informs the number of temporary crops that dominate rainfed agricultural 

production in each municipality in the Northeast Brazil The calculation of the indicator is carried 

out as follows (Aguilar et al., 2015):

   (13)

3.1.2 Standardized Drought Index

To measure extreme events, we calculate the Standardized Drought Index (SDI) using monthly 

precipitation and temperature data for Northeast Brazil from 1980 to 2019. The SDI combines 

above-normal temperatures and below-normal precipitation, capturing both heat and dryness to 

reflect drought severity (Yu; Babcock, 2010). The index is calculated using the following formula:

   (14)

where  is the standardized drought index for the municipality ( ) and year ( ).  is 

the normalized deviation of seasonal precipitation relative to your normal value.  is the 

normalized deviation of seasonal temperature relative to your normal value. To make the index 

comparable across municipalities over time, the index is standardized. The statistical nature of 

this index gives it historical context and, because it is spatially consistent, allows comparisons 

between municipalities with markedly different climates.

3.2 ECONOMETRIC STRATEGY

3.2.1 Identifying determinants of agricultural diversification

Our econometric strategy first identifies the key factors driving diversification in rainfed agri-

culture. This exploratory analysis uncovers what promotes or limits agricultural diversification in 

Northeast Brazil, providing essential insights for policies and programs that support sustainable 

farming and climate resilience in municipalities. To do this, we use the following empirical model:

  (15)

where  is the Modified Simpson's diversification index for the municipality ( ), state ( ), 

and year ( ), while  is a vector of covariates: agricultural inputs, climatic conditions, natural 

resources, water infrastructure, type of cultivation, rural credit, rural investment, and characteris-

tics of the municipality, such as market size (population density), average income non-rural, and 

land use with temporary crops. The municipality fixed effects () control for observable and uno-

bservable time-invariant characteristics that influence agricultural planting decisions. Year fixed 

effects ( ) control shocks common to all municipalities in the region. The term  is a vector of 

parameters, and  is the clustered error term at the local level.

We use the quantile regression via moments method proposed by Machado and Silva (2019), 

with fixed effects for municipalities and years, to examine how covariates affect agricultural di-
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versification. The results from this method are consistent with those obtained using bidirectional 

fixed effects (Miao et al., 2022). We estimate the covariate effects locally, as well as at the 0.25 

and 0.75 quantiles, to capture differences between municipalities with low and high levels of agri-

cultural diversification.

3.2.2 Estimation the effect of drought on agricultural diversification

A natural experiment is essential to identify the causal effect of droughts on agricultural diver-

sification. It allows us to construct a counterfactual-what would have happened in the absence of 

drought. To measure the impact of extreme events, we use a drought index based on the product 

of precipitation and temperature anomalies. This index provides exogenous variation, unrelated to 

farmers' decisions to plant temporary crops. Droughts serve as an ideal natural experiment because 

their timing, intensity, and duration are unpredictable. As a result, we can compare diversification 

levels across municipalities and isolate the causal effect of droughts without concerns about selec-

tion bias (Deschênes; Greenstone, 2007; Dell et al., 2014).

In this context, no other factors are expected to affect the relationship between droughts and 

agricultural diversification. If municipal-level diversification reflects the combined planting deci-

sions of individual farmers – and based on the theoretical model – we estimate the causal effects 

using the following empirical equation:

  (16)

where the drought index is denoted by  is our main measure of climate shocks at time 

, with  , whose lags are calculated from 19987. The coefficients  capture the 

contemporaneous and lagged effects of drought on agricultural diversification . The sum 

of the coefficients of interest ( ) captures the contemporary and lagged effects 

of droughts on agricultural diversification. The lagged terms offer two direct advantages. First, 

they allow for accounting for the correlation of drought by discerning the possibility of temporal 

displacement of effects, resulting in one best estimation of the impact of contemporary shocks. 

Second, they enable the identification of the persistence of effects over the ongoing period. If we-

ather effects are persistent, then the linear combination of contemporary and lagged coefficients 

(sum) must not be equal to zero.  is a vector of control variables, such as agricultural inputs 

and municipal characteristics. In addition to the municipality fixed effects ( ), we also include 

a state and year fixed effects interaction  to control for common shocks that affect 

municipalities belonging to the same state.

The impact of droughts depends on their severity, duration, and the level of agricultural diver-

sification (Seo, 2010). To test this, we use a quantile regression model to analyze how drought 

affects agricultural diversification across different levels in municipalities of Northeast Brazil.

4 RESULTS

4.1 Drought events and diversification in rainfed agriculture

Figure 1 shows the distribution of the Standardized Drought Index (SDI) for Northeast Brazil 

from 2000 to 2019. The index ranges from 0 to 5, but we include only values above 0.1, following 

Yu and Babcock (2010). Values near 0.1 reflect normal precipitation and above-average tempera-

7 In the Appendix
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tures, indicating typical climate conditions. As shown, the SDI is concentrated near its lower limit, 

suggesting that most droughts in the period were of low or moderate intensity. Severe or extreme 

droughts (SDI > 1) were less frequent, as indicated by the kernel density.

Figure 1 – Frequency distribution and kernel density of the drought index

Notes: Relative frequency and kernel density considering the values of SDI > 0.1.

Table 1 shows the distribution of the SDI, the temperature and precipitation deviations used 

in its calculation, and the number of drought events by intensity for the periods 2000–2010 and 

2010–2019. It also reports the average diversification indices in rainfed agriculture for each drou-

ght intensity level. Most droughts in Northeast Brazil between 2000 and 2010 were classified 

as mild (25.93%) or moderate (11.14%), while only 3% were extremely intense. On average, 

droughts were less severe during this decade, with a mean SDI of 0.532. Municipalities facing 

severe or extreme droughts showed greater agricultural diversification, cultivating an average of 

3.3 temporary crops per year. In contrast, those affected by mild or moderate droughts had lower 

Simpson, Shannon, and Effective Number indices. Overall, the data suggest that more intense 

droughts are associated with higher levels of diversification in rainfed agriculture.

Table 1 – Distribution of the Standardized Drought Index (SDI) for Northeast Brazil

Severity level SDI
Standardized deviation

Agricultural 
Drought 

Events
Min (TRD) Max (MTD) S H N

Intensity Scale Mean SD Mean SD Mean SD Mean Mean Mean N %

Period 2000-2010

Almost normal 0.005 0.017 0.087 0.197 0.104 0.230 0.540 1.001 2.895   

Light drought 0.267 0.114 0.499 0.237 0.590 0.227 0.547 1.006 2.911 2853 59.95

Moderate drought 0.723 0.147 0.785 0.195 0.957 0.227 0.545 1.008 2.902 1234 25.93

Severe drought 1.194 0.136 1.062 0.277 1.193 0.295 0.583 1.094 3.137 530 11.14

Extreme drought SDI > 1.5 1.734 0.195 1.119 0.227 1.600 0.297 0.623 1.163 3.303 142 2.98

Mean SDI> 0.1 0.532 0.400 0.654 0.312 0.783 0.354 0.553 1.021 2.946 4759 100

Period 2010-2019

Almost normal 0.008 0.022 0.213 0.422 0.277 0.376 0.506 0.921 2.705   

Light drought 0.280 0.117 0.521 0.344 0.689 0.370 0.506 0.912 2.663 3276 32.15

Moderate drought 0.741 0.141 0.793 0.309 1.042 0.357 0.520 0.932 2.711 2752 27.01

Severe drought 1.243 0.147 1.011 0.290 1.314 0.351 0.511 0.919 2.687 1816 17.82

Extreme drought SDI > 1.5 2.171 0.622 1.345 0.309 1.648 0.394 0.514 0.949 2.772 2345 23.02

Mean SDI> 0.1 1.012 0.783 0.871 0.444 1.116 0.518 0.512 0.927 2.705 10189 100

-

Birthal et al. (2015) and Yu and Babcock (2010) to determine drought intensity in India and the United States.
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Between 2010 and 2019, Northeast Brazil faced its most severe drought in a century, with a 

sharp rise in moderate (27.01%), severe (17.82%), and extreme (23.02%) drought events. Com-

pared to the previous decade, severe and extreme events increased significantly, and the average 

SDI nearly doubled to 1.012. At the same time, the Simpson and Shannon diversity indices fell 

by 7.4% and 9.2%, respectively. The average number of temporary crops in municipalities hit by 

extreme droughts dropped to 2.7. While these areas still showed relatively high diversification, 

the data point to a clear decline in crop diversity due to drought. This trend toward specialization 

threatens the long-term sustainability of the agricultural sector.

Figure 2 shows the evolution of rainfed agriculture diversification indices in Northeast Brazil 

from 2000 to 2019. The Simpson and Shannon indices rose steadily until 2010 but have declined 

since then across both semi-arid and non-semi-arid areas. Even in the MAPIBA region (Maranhão, 

Piauí, and Bahia)-the region’s new agricultural frontier-diversification has fallen. Despite the 

area's prominence in recent decades for its expanding grain production, driven by low land costs 

and corporate investment in agricultural technology, recurring droughts have also taken a toll.

Initial evidence points to a decline in agricultural diversification linked to the severe droughts 

since 2012. Between 2000 and 2019, diversification fell by about 8% according to the Simpson 

index, 10% by the Shannon index, and 9% by the Effective Number index. The Simpson index 

shows a decrease of 8.25% in the semi-arid region and 7.5% in the non-semi-arid region. In the 

MAPIBA area, diversification dropped by 6.7%, compared to 8.2% in non-MAPIBA areas. On 

average, agricultural diversification declined at a rate of 0.46% per year in the region, with annual 

reductions of 0.48% in the semi-arid zone and 0.42% in the non-semi-arid zone. The MAPIBA 

region saw an average yearly drop of 0.36%, while non-MAPIBA areas declined by 0.43% per 

year. Between 2000 and 2019, the effective number of temporary crops planted in the Northeast 

dropped from 2.9 to 2.6, reflecting similar declines in semi-arid areas (3.1 to 2.7) and non-semi-

-arid areas (2.7 to 2.5). This reduction in agricultural diversification also affects municipalities 

with publicly irrigated lands, where the Simpson and Shannon indices decrease annually by 0.4% 

and 0.63%, respectively. The number of temporary crops in irrigation hubs follows the same do-

wnward trend. The only exception is the MAPIBA area, where the average of three temporary 

crops has remained stable.

Figure 2 – Diversification of rainfed agriculture in Northeast Brazil, 2000-2019
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Over the past two decades, the area for temporary crops in Northeast Brazil has changed sig-

nificantly. Commercial crops like soybeans rose from 9.2% to 35.6%, and corn slightly increased 

from 28.4% to 26.9% of the planted area. Meanwhile, subsistence crops declined sharply: beans 

fell from 26.4% to 14.4%, and cassava from 8.2% to 4.1%. This shift toward commercial crops 

results from expanded grain cultivation in pasture and native vegetation areas and changes in the 

national agricultural export agenda. The drop in subsistence crops reflects the growth of commer-

cial crops, shifting market demand, and frequent crop failures due to climate variability (Figure 

3). However, this should not be seen as a simple replacement of subsistence crops by commercial 

ones, but rather as commercial crops increasingly dominating the total planted area. This concen-

tration raises the risk of productivity and income losses, especially as climate change worsens 

droughts in the region.

Recent studies by Parré and Chagas (2022) and Piedra-Bonilla et al. (2020b) show a clear trend 

toward agricultural specialization across Brazil. This shift involves adopting cost-cutting tech-

nologies to meet rising demand for affordable food (Roest et al., 2018). However, the decline in 

agricultural diversification in the Northeast goes beyond economic and technological factors. In-

tense, recurring droughts create water shortages and lower crop yields, making it hard for farmers 

to maintain diverse crops sustainably (Makate et al., 2022; Marengo et al., 2020).

Figure 3 – Proportion of area planted with temporary crops in Northeast Brazil

Figure 4 – Diversification of rainfed agriculture in the states of Northeast Brazil
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Figure 4 shows agricultural diversification in Northeast Brazil for 2000, 2010, and 2019. Ex-
cept for Alagoas, which grew by 1% annually, all other states saw declines. Sergipe dropped 2.6% 
per year, while the rest fell between 0.3% and 1% annually. Maranhão stands out as the only state 
maintaining an average of three temporary crops per year; the others dropped to two.

Figure 5 shows the evolution of agricultural diversification from 2000 to 2019, with a five-year 
interval, using a color scheme where green indicates high agricultural diversification and red re-
presents low diversification. The spatial distribution of the Simpson and Shannon indices reveals 
a trend of decreasing agricultural diversification in municipalities located in the central area of 
the Northeast region. This decline can likely be attributed to persistent water deficits and limited 
availability of natural resources. Consequently, this change in land cover increases the region’s 
vulnerability to desertification and drought (Marengo et al., 2020).

Figure 5 – Spatial distribution of agricultural diversification in Northeast Brazil

Between 2000 and 2019, the Simpson index shows a drop in highly diversified municipalities 
from 5% to 4%, and diversified ones from 74% to 60%. Meanwhile, specialized municipalities 
rose from 13% to 24%, and highly specialized from 8% to 12%. In the semi-arid region, highly 
diversified municipalities fell from 6% to 4%, diversified from 83% to 68%, while specialized and 
highly specialized municipalities grew from 11% to 25% and 1% to 3%, respectively.8

The descriptive analysis aligns with studies worldwide. Aguilar et al. (2015) observed a decline 
in U.S. agricultural diversification driven by climate change, resource limits, and technological 
shifts, while regions that increased diversification adopted direct planting and crop rotation. Si-
milarly, Makate et al. (2022) showed that drought shocks hindered diversification as a climate 
adaptation strategy in Ethiopia. Han and Lin (2021) reported mixed trends in China’s regional 
agricultural diversification due to cyclical changes.

Appendix (Figure B1).
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4.2 Analysis of the determinants of diversification in rainfed agriculture

Table 2 shows the results of the quantile regression model with fixed effects for municipality 
and year, applied to agricultural diversification indices. The Shannon and Effective Number in-
dices confirm the robustness of the Simpson index results. The quantiles capture heterogeneous 
effects by examining covariate correlations at both low and high levels of agricultural diversifica-
tion. These findings align with those from the bidirectional fixed effects model.

Precipitation boosts agricultural diversification measured by the Simpson and Shannon indices, 
while high temperatures reduce it – especially at the highest quantile. Elevated temperatures cause 
soil moisture deficits and water stress, lowering diversification at the municipal level. This signi-
ficant effect matches Rahman’s (2016) findings that year-round rainfall increases diversification 
in Bangladesh, whereas high temperatures decrease it. 

Rainfall and temperature deviations (climate variability) are positively linked to agricultural 
diversification (Simpson and Shannon), especially in the lowest quantile. This shows that diversi-
fication in Northeast Brazil’s municipalities increases with climate variability. Our findings align 
with Piedra-Bonilla et al. (2020a), who reported that irregular rainfall and temperatures boost 
diversification in Brazilian municipalities. However, their cross-sectional study, which combined 
temporary and permanent crops, could not separate effects by crop type. In short, climate variabi-
lity drives diversification in rainfed cropping systems. Policymakers and practitioners aiming for 
sustainable agriculture in vulnerable regions should consider these impacts (Asfaw et al., 2018).

Lower levels of agricultural diversification are associated with greater land use and higher 
physical capital (Roest et al., 2018). The adoption of new technologies and mechanization tends 
to drive specialization. Physical capital has a significant impact only at low and medium diversifi-
cation levels, while land use influences all levels. These findings are consistent with Anwer et al. 
(2019) and Birthal et al. (2020) for India, and Rahman (2008; 2016) for Bangladesh.

Family farmers drive diversification in dryland agriculture, boosting income, food security, and 
sustainability. In Northeast Brazil, rural families play a key role in food production for both local 
consumption and distribution. In contrast, non-family labor has mixed effects—reducing diversi-
fication at lower quantiles but increasing it at higher ones. Overall, the workforce is essential for 
enhancing productivity and agricultural diversity (Bellon et al., 2020; Herrera et al., 2018).

Irrigated land has no significant impact on agricultural diversification in the Northeast, a fin-
ding also reported by Rahman (2016) for Bangladesh. In contrast, diversification is positively 
linked to non-agricultural income, population density (as a proxy for market size), and rural cre-
dit. Higher income and larger markets drive diversification by increasing food demand. However, 
market size significantly affects only the effective number of crops. Similar patterns were found 
by Anwer et al. (2019) in India and Parré and Chagas (2022) in Brazil.

Rural credit significantly supports agricultural diversification across all quantiles. Investment 
credit enables the expansion of diversified systems, benefiting Northeast agriculture by reducing 
climate risks, production costs, greenhouse gas emissions, pests, and aiding soil conservation. 
This strategy should be combined with the cultivation of drought-tolerant crops and the adoption 
of environmentally sustainable practices (Piedra-Bonilla et al., 2020a).

Rural credit significantly supports agricultural diversification across all quantiles. Investment 
credit enables the expansion of diversified systems, benefiting Northeast agriculture by reducing 
climate risks, production costs, greenhouse gas emissions, pests, and aiding soil conservation. 
This strategy should be combined with the cultivation of drought-tolerant crops and the adoption 
of environmentally sustainable practices (Piedra-Bonilla et al., 2020a; Herrera et al., 2018).
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Table 2 – Quantile regression via moments for determinants of diversification in rainfed agriculture

 Shannon

0.25 Local 0.75 0.25 Local 0.75 0.25 Local 0.75

Land use (soil) -0.171*** -0.140*** -0.110*** -0.216*** -0.189*** -0.164*** -0.790*** -0.678*** -0.574***

 [0.0280] [0.0294] [0.0343] [0.0314] [0.0305] [0.0337] [0.105] [0.115] [0.138]

Capital 

(tractors)
-0.0263*** -0.00970** 0.00619 -0.0409*** -0.0226*** -0.00554 -0.101*** -0.0371** 0.0233

 [0.00403] [0.00396] [0.00449] [0.00455] [0.00387] [0.00388] [0.0148] [0.0153] [0.0180]

Family work 0.0229*** 0.0187*** 0.0147*** 0.0345*** 0.0257*** 0.0174*** 0.0789*** 0.0635*** 0.0491***

 [0.00410] [0.00362] [0.00385] [0.00503] [0.00393] [0.00365] [0.0150] [0.0138] [0.0153]

Non-family 

work
-0.00536 0.00147 0.00802** -0.00926*** -0.0016 0.00558* -0.0167 0.0102 0.0355**

 [0.00337] [0.00325] [0.00378] [0.00350] [0.00303] [0.00315] [0.0123] [0.0124] [0.0148]

Irrigated area 0.00391 0.00327 0.00266 0.00374 0.00293 0.00216 0.013 0.0153 0.0174

 [0.00258] [0.00255] [0.00300] [0.00283] [0.00252] [0.00272] [0.00927] [0.00989] [0.0122]

Rainfall 0.102*** 0.0836*** 0.0656*** 0.0831*** 0.0666*** 0.0510*** 0.360*** 0.337*** 0.316***

 [0.0173] [0.0154] [0.0160] [0.0177] [0.0138] [0.0123] [0.0670] [0.0617] [0.0666]

Rainfall 

deviation
0.0114*** 0.00776** 0.00429 0.00645 0.00453 0.00272 0.0343** 0.0342** 0.0340**

 [0.00404] [0.00359] [0.00383] [0.00404] [0.00320] [0.00299] [0.0153] [0.0142] [0.0157]

Temperature -0.221 -0.941** -1.632*** 0.207 -0.356 -0.885*** -2.576* -4.992*** -7.259***

 [0.404] [0.378] [0.419] [0.361] [0.313] [0.324] [1.549] [1.494] [1.698]

Temperature 

deviation
0.0143** 0.0272*** 0.0395*** 0.00575 0.0166*** 0.0268*** 0.0792*** 0.130*** 0.177***

[0.00687] [0.00645] [0.00725] [0.00625] [0.00542] [0.00567] [0.0262] [0.0254] [0.0295]

Rural credit 0.00213** 0.00268** 0.00320*** 0.00266*** 0.00272*** 0.00277*** 0.00962** 0.0121*** 0.0145***

 [0.00108] [0.00105] [0.00120] [0.000980] [0.000863] [0.000905] [0.00408] [0.00417] [0.00493]

Average income 0.0105 0.0154* 0.0201** 0.0193** 0.0182** 0.0171** 0.051 0.0780** 0.103***

 [0.00954] [0.00914] [0.00975] [0.00921] [0.00780] [0.00748] [0.0361] [0.0355] [0.0393]

Market size 

(Density)
0.00949 0.0271 0.044 0.0233 0.0241 0.0248 0.0491 0.156 0.257**

 [0.0297] [0.0280] [0.0297] [0.0306] [0.0258] [0.0243] [0.119] [0.118] [0.129]

Rural 

investment
0.000814 0.000213 -0.000363 0.000826 0.00045 0.0000977 0.00315 0.00131 -0.000417

 [0.000882] [0.000847] [0.000972] [0.000870] [0.000740] [0.000768] [0.00336] [0.00336] [0.00395]

Forest coverage 0.0201* 0.0164 0.0129 0.0164 0.0145 0.0126 0.0752* 0.0607 0.0471

 [0.0111] [0.0104] [0.0114] [0.0104] [0.00893] [0.00903] [0.0420] [0.0417] [0.0475]

Water resource -0.0001 0.00362* 0.00716*** 0.00350* 0.00540*** 0.00717*** 0.007 0.0199** 0.0320***

 [0.00201] [0.00196] [0.00215] [0.00186] [0.00158] [0.00157] [0.00770] [0.00778] [0.00874]

Weir 0.0143 0.00039 -0.0129 0.0145 0.00687 -0.000249 0.0576 0.0115 -0.0317

 [0.0131] [0.0131] [0.0150] [0.00977] [0.00880] [0.00943] [0.0532] [0.0602] [0.0738]

Dam -0.0305* -0.0316* -0.0327* -0.0142 -0.0142 -0.0143 -0.112 -0.126 -0.14

 [0.0179] [0.0171] [0.0177] [0.0127] [0.0110] [0.0103] [0.0738] [0.0780] [0.0869]

Commercial cul-

tivation (corn)
0.0324*** 0.00275 -0.0257*** 0.0387*** 0.0142*** -0.00889** -0.0117 -0.0975*** -0.178***

 [0.00555] [0.00507] [0.00539] [0.00493] [0.00392] [0.00353] [0.0201] [0.0195] [0.0215]

Subsistence cul-

tivation (beans)
0.114*** 0.0753*** 0.0379*** 0.0908*** 0.0569*** 0.0252*** 0.247*** 0.135*** 0.0299

 [0.00630] [0.00601] [0.00668] [0.00564] [0.00461] [0.00450] [0.0226] [0.0226] [0.0260]

Notes: 
-

cal multicollinearity test (VIF) yielded an average value of 1.92 for each model. Invariant variables such as labor, tractors, and irrigated area are 
weighted by temporary crop areas to vary over time. Corn and bean cultivation are binary variables that take the value of one if the municipality 
has a cultivation area above the mean within the regional cultivation area. In brackets are the grouped standard errors at the local level, robust 
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Water availability is positively linked to greater agricultural diversification, while the presence 

of infrastructure like dams shows a negative correlation. Supporting water conservation is essen-

tial, as it promotes sustainable agricultural practices and reduces climate-related risks. In contrast, 

building dams tends to discourage diversification as a strategy for managing agricultural risk 

(Marengo et al., 2022; Birthal; Hazrana, 2019).

Land use focused on commercial crops like corn is linked to lower agricultural diversifica-

tion (Shannon and Effective Number). In contrast, bean cultivation boosts diversification, sho-

wing that subsistence farming promotes more diverse agricultural systems in municipalities (Ro-

est et al., 2018).

4.3 Effects of drought on diversification of rainfed agriculture

Table 3 – Effects of drought on diversification of rainfed agriculture

 
Shannon

(1) (2) (3) (4) (5) (6)

SDI, t -0.0131*** -0.0124*** -0.0145*** -0.0129*** -0.0613*** -0.0581***

 [0.00320] [0.00320] [0.00288] [0.00286] [0.0121] [0.0121]

SDI, t–1 -0.0170*** -0.0177*** -0.0167*** -0.0166*** -0.0823*** -0.0849***

 [0.00338] [0.00331] [0.00307] [0.00296] [0.0127] [0.0124]

SDI, t–2 -0.00593** -0.00522* -0.00470** -0.00352 -0.0419*** -0.0380***

 [0.00280] [0.00280] [0.00236] [0.00236] [0.0111] [0.0110]

Sum (SDI) -0.0361*** -0.0353*** -0.0359*** -0.0330*** -0.186*** -0.181***

 [0.00764] [0.00758] [0.0068] [0.0067] [0.0299] [0.0296]

Var. dependent (mean) 1.200 1.200 0.654 0.654 2.808 2.808

SD within (SDI, t) 0.609 0.609 0.609 0.609 0.609 0.609

R–sq 0.077 0.095 0.124 0.156 0.102 0.122

Test F (3, 1793) 9.17*** 9.88*** 11.88*** 11.80*** 14.54*** 15.72***

N 35,880 35,880 35,880 35,880 35,880 35,880

Yes Yes Yes Yes Yes Yes

Yes Yes Yes Yes Yes Yes

Basic controls No Yes No Yes No Yes

Table 3 shows the effects of drought on diversification in rainfed agriculture, both with and 

without controls. The F-statistics are significant at the 1% level across all models, confirming that 

the contemporaneous and lagged coefficients of the Standardized Drought Index (SDI) are jointly 

significant. Controlling for agricultural inputs and municipal characteristics unrelated to drought 

does not affect the results, which remain robust and statistically significant for all diversification 

indicators – Simpson, Shannon, and Effective Number. The inclusion of these covariates does not 

significantly alter the coefficients or standard errors, suggesting that the SDI behaves like a ran-

dom variable across municipalities in the Northeast.

Model analysis with controls shows that cumulative drought reduces diversification of tem-

porary crop areas by 3% (Simpson), 5.5% (Shannon), and 6.5% (Effective Number) compared 

to the unconditional average. This indicates that ongoing drought—caused by combined rainfall 

and temperature variations—significantly lowers municipal agricultural diversification in terms 

of quantity, abundance, and equity. Specifically, a one standard deviation increase in the cur-

rent drought index decreases diversification by 0.75% (Simpson), 0.79% (Shannon), and 3.54% 

(Effective Number) (Table 4). These results are consistent with Costa et al. (2021), which found 

that temporary crop production in Brazil’s semiarid region is highly vulnerable to drought shocks.
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Quantile regression results (Table 4) show that drought impacts agricultural diversification 

unevenly, hitting areas with low diversification hardest. Municipalities with less diversified tem-

porary crops are less resilient to drought, while those with higher diversification are more resis-

tant. This supports the idea that diversification is a key strategy for managing climate risks in 

rainfed agriculture (Birthal; Hazrana, 2019).

A one-standard-deviation rise in the current drought index reduces Simpson’s diversification 

index by 1.2% at the 0.1 quantile and 0.3% at the 0.9 quantile. The Shannon index shows a similar 

pattern, with drought lowering diversification by 1.5% at the 0.1 quantile and 0.1% at the 0.9 quan-

tile. However, the drought impact at the 0.9 quantile is statistically insignificant for both indices. 

Effects on the Effective Number of temporary crops follow the same trend. These findings align 

with Seo (2010), who reported that diversified cropping systems suffer less climate damage than 

specialized ones in hot, dry conditions – though both are negatively affected by climate shocks.

A one-standard-deviation increase in contemporary drought reduces agricultural diversifica-

tion by 0.8% in both Simpson and Shannon indices and by 3.5% in the Effective Number. Higher 

diversification levels lessen the immediate and one-year lagged drought impacts. However, when 

drought lasts over a year, its negative effect grows. After two years, drought damages increase 

even in highly diversified areas, likely because managing multiple crops becomes harder during 

prolonged dry spells (Seo, 2010).

Table 4 – Effects of drought on diversification of rainfed agriculture

 0.1 0.25 Local 0.75 0.9

Quantile Impact Quantile Impact Quantile Impact Quantile Impact Quantile Impact

SDI, t -0.0192*** -1.2% -0.0162*** -1.0% -0.0124*** -0.8% -0.00856*** -0.5% -0.00566 -0.3%

 [0.00442]  [0.00375]  [0.00320]  [0.00319]  [0.00355]  

SDI, t–1 -0.0248*** -1.4% -0.0217*** -1.2% -0.0177*** -1.0% -0.0138*** -0.8% -0.0108*** -0.6%

 [0.00487]  [0.00401]  [0.00330]  [0.00333]  [0.00384]  

SDI, t–2 -0.0025 -0.2% -0.00368 -0.3% -0.00522* -0.4% -0.00673** -0.5% -0.00788** -0.6%

 [0.00373]  [0.00314]  [0.00279]  [0.00304]  [0.00356]  

Shannon 

SDI, t -0.0253*** -1.5% -0.0195*** -1.2% -0.0129*** -0.8% -0.00635** -0.4% -0.0017 -0.1%

 [0.00453]  [0.00366]  [0.00286]  [0.00251]  [0.00265]  

SDI, t–1 -0.0272*** -1.5% -0.0223*** -1.2% -0.0166*** -0.9% -0.0111*** -0.6% -0.00711** -0.4%

 [0.00499]  [0.00391]  [0.00295]  [0.00264]  [0.00294]  

SDI, t–2 -0.00204 -0.2% -0.00273 -0.2% -0.00352 -0.3% -0.00429* -0.3% -0.00484* -0.4%

 [0.00357]  [0.00288]  [0.00236]  [0.00230]  [0.00256]  

SDI, t -0.0862*** -5.2% -0.0749*** -4.6% -0.0581*** -3.5% -0.0417*** -2.5% -0.0280* -1.7%

 [0.0153]  [0.0135]  [0.0121]  [0.0129]  [0.0150]  

SDI, t–1 -0.108*** -6.1% -0.0987*** -5.5% -0.0849*** -4.8% -0.0714*** -4.0% -0.0602*** -3.4%

 [0.0163]  [0.0140]  [0.0124]  [0.0135]  [0.0161]  

SDI, t–2 -0.0247* -1.8% -0.0301** -2.2% -0.0380*** -2.8% -0.0458*** -3.4% -0.0523*** -3.9%

 [0.0136]  [0.0118]  [0.0110]  [0.0125]  [0.0149]  

are calculated using the standard deviation (within) for the drought index: SDI, t (0.609), SDI, t-1 (0.560), and SDI, t-2 (0.736). In brackets are 

Table 5 shows the non-linear effects of drought on agricultural diversification. The local im-

pact of a current drought shock is similar to the linear estimates: 0.8% for Simpson, 0.93% for 

Shannon, and 3.16% for Effective Number. However, drought shocks at lower levels exert a gre-
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ater influence on reducing agricultural diversification, while at higher levels, the contemporary 

impact is statistically insignificant. In contrast, lagged drought shocks significantly affect areas 

with higher diversification. This indicates that growing a variety of temporary crops helps buffer 

drought effects lasting up to a year. As droughts persist, diversification drops sharply, especially 

in municipalities with less variety. Thus, agricultural diversification acts as an adaptive strategy 

that boosts resilience against prolonged droughts.

Our results show that agriculture in Northeast Brazil is becoming more vulnerable to climate chan-

incomes, boosts food security, and preserves local biodiversity (Zúñiga et al., 2021; Mulwa; Visser, 

2020; Makate et al., 2022; Bellon et al., 2020). Expanding rural services and improving access to 

credit can help municipalities diversify agriculture, optimize scarce natural resources, and strengthen 

investing in targeted public programs, such as expanding technical assistance and providing improved 

seeds to smallholders (Piedra-Bonilla et al., 2020a; Roest et al., 2018; Seo, 2010).

Table 5 – Effect of drought shocks on agricultural diversification

 0.10 0.25 Local 0.75 0.90

Quantile Impact Quantile Impact Quantile Impact Quantile Impact Quantile Impact

Drought 

shock, t
-0.0226*** -2.3% -0.0162*** -1.62% -0.00791* -0.79% 0.000254 0.03% 0.0065 0.65%

 [0.00619]  [0.00516]  [0.00446]  [0.00481]  [0.00567]  

Drought 

shock, t–1
-0.0329*** -3.3% -0.0288*** -2.88% -0.0235*** -2.35% -0.0182*** -1.82% -0.0142*** -1.42%

 [0.00628]  [0.00523]  [0.00444]  [0.00464]  [0.00541]  

Drought 

shock, t–2
-0.0044 -0.4% -0.00654 -0.65% -0.00936** -0.94% -0.0121*** -1.21% -0.0142*** -1.42%

 [0.00519]  [0.00430]  [0.00375]  [0.00412]  [0.00490]  

Shannon 

Drought 

shock, t
-0.0229*** -2.29% -0.0165*** -1.65% -0.00929** -0.93% -0.00217 -0.22% 0.00293 0.29%

 [0.00623]  [0.00490]  [0.00385]  [0.00368]  [0.00419]  

Drought 

shock, t–1
-0.0321*** -3.21% -0.0268*** -2.68% -0.0209*** -2.09% -0.0150*** -1.50% -0.0107*** -1.07%

 [0.00651]  [0.00510]  [0.00392]  [0.00360]  [0.00403]  

Drought 

shock, t–2
-0.000121 -0.01% -0.00243 -0.24% -0.00502* -0.50% -0.00758*** -0.76% -0.00942*** -0.94%

 [0.00497]  [0.00387]  [0.00302]  [0.00292]  [0.00335]  

Drought 

shock, t
-0.0827*** -8.27% -0.0622*** -6.22% -0.0316* -3.16% -0.00174 -0.17% 0.023 2.30%

 [0.0211]  [0.0183]  [0.0170]  [0.0196]  [0.0239]  

Drought 

shock, t–1
-0.128*** -12.80% -0.116*** -11.60% -0.0969*** -9.69% -0.0785*** -7.85% -0.0632*** -6.32%

 [0.0212]  [0.0183]  [0.0168]  [0.0189]  [0.0229]  

Drought 

shock, t–2
-0.0323* -3.23% -0.0395** -3.95% -0.0503*** -5.03% -0.0608*** -6.08% -0.0695*** -6.95%

 [0.0187]  [0.0161]  [0.0149]  [0.0172]  [0.0210]  

the grouped standard errors at the local level, robust to heteroscedasticity and autocorrelation. Estimation of quantile regression model via 
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Robustness check. Appendix C shows robustness checks using both linear and non-linear drou-

ght measures: (i) different SDI intensity bins (Table C.1); (ii) separate effects of precipitation and 

temperature deviations as drought indicators (Table C.2); and (iii) SDI in contemporary, quadratic, 

and cubic forms (Table C.3).

We can summarize these additional results as follows. First, the results confirm the robustness 

and consistency of the results presented in this section. Examining the nonlinear effects, we find 

that the more severe the drought, the greater the decrease in agricultural diversification. This effect 

is more pronounced in municipalities that are more specialized in planting temporary crops. In 

addition, temperature deviations in the form of drought contribute more to the decline in agricul-

tural diversification, although the decrease in precipitation has the same effect. This is consistent 

with evidence that higher temperatures negatively affect the diversification of temporary crops 

due to their sensitivity to thermal stress and changes in growth cycles, as well as the increased risk 

of pests and diseases. Furthermore, contemporary SDI has a negative effect on agricultural diver-

sification, while square and cubic SDI have positive and negative effects, respectively. Intuitively, 

this implies that droughts can promote both increased and decreased agricultural diversification 

in Northeast Brazil.

5 FINAL REMARKS

Diversifying temporary crops offers major benefits for food security, environmental protec-

tion, and sustainable farming. This is especially important in Brazil’s Northeast, where frequent 

droughts and a strong reliance on agriculture make the region highly vulnerable. By adopting crop 

diversification, local farmers can better withstand climate change, boost productivity, and streng-

then their economic resilience – all while preserving natural resources.

Given the projected increase in drought frequency and intensity due to climate change, we 

analyzed how these events affect the diversification of land used for temporary crops in the Bra-

zilian Northeast. Our findings show that over 60% of municipalities have satisfactory levels of 

diversification-68% in semi-arid areas and 46% in non-semiarid areas. However, agricultural di-

versification has declined steadily over the past two decades, averaging a 0.5% drop per year. 

From 2000 to 2019, diversification in rainfed agriculture fell by 8% across the Northeast-8.25% in 

the semi-arid region and 7.5% in the non-semiarid region. This decline is largely driven by climate 

change, which has intensified recurring droughts. It's important to note that regional changes in 

crop diversification don’t necessarily reflect changes in the number of rural establishments.

Our results show that while climate variability is linked to increased agricultural diversifica-

tion, droughts have the opposite effect, reducing the variety of temporary crops planted in Nor-

theast municipalities. These impacts vary across regions and are strongest where diversification is 

already low. As droughts become more frequent and prolonged, the risks to income and producti-

vity grow, making it essential for farmers and local governments to adopt adaptation strategies to 

reduce these risks.

Our analysis shows that agricultural diversification in municipalities tends to increase with 

factors like family labor, natural resource conservation (water and forests), local market size, 

non-rural income, rainfall, and access to rural credit. In contrast, diversification decreases with 

greater mechanization, intensive use of land for temporary crops, higher temperatures, and dam 

construction. We also find that higher diversification in rainfed agriculture is linked to subsisten-

ce farming, while lower diversification is associated with commercial crop cultivation. Growing 

high-yield crops like corn often leads to reduced agricultural diversification.

Our findings support the promotion of rural credit policies focused on sustainable production, 

as they give farmers the financial means to adopt new crops and modernize farming practices. 

These actions are key to diversifying local agricultural production, securing small farmers’ live-
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lihoods, and boosting sustainability and resilience to drought. Other necessary measures include 
expanding technical assistance and increasing public investment to support family farming, which 
plays a vital role in diversification, food security, and sustainable development.

Given the impact of drought on crop failure and productivity – with consequences such as food 
insecurity and rural poverty – our results offer valuable guidance for public policies aimed at cli-
mate adaptation in semi-arid regions of the developing world. We show that diversifying temporary 
crops can strengthen economic resilience and help reduce agricultural losses in Brazil’s Northeast.
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